- abelian varieties
- матем. абелевы многообразия
Англо-русский универсальный дополнительный практический переводческий словарь И. Мостицкого. И. Мостицкий. 2002-2012.
Англо-русский универсальный дополнительный практический переводческий словарь И. Мостицкого. И. Мостицкий. 2002-2012.
Arithmetic of abelian varieties — In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or family of those. It goes back to the studies of Fermat on what are now recognised as elliptic curves; and has become a very… … Wikipedia
Timeline of abelian varieties — This is a timeline of the theory of abelian varieties in algebraic geometry, including elliptic curves.Early history* c. 1000 Al Karaji writes on congruent numbers [ [http://www.cms.math.ca/Events/summer05/abs/pdf/hm.pdf PDF] ] eventeenth… … Wikipedia
Equations defining abelian varieties — In mathematics, the concept of abelian variety is the higher dimensional generalization of the elliptic curve. The equations defining abelian varieties are a topic of study because every abelian variety is a projective variety. In dimension d ge; … Wikipedia
Abelian variety — In mathematics, particularly in algebraic geometry, complex analysis and number theory, an Abelian variety is a projective algebraic variety that is at the same time an algebraic group, i.e., has a group law that can be defined by regular… … Wikipedia
Abelian variety of CM-type — In mathematics, an abelian variety A defined over a field K is said to have CM type if it has a large enough commutative subring in its endomorphism ring End(A). The terminology here is from complex multiplication theory, which was developed for… … Wikipedia
Dual abelian variety — In mathematics, a dual abelian variety can be defined from an abelian variety A, defined over a field K. Contents 1 Definition 2 History 3 Dual isogeny (elliptic curve case) … Wikipedia
History of manifolds and varieties — The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surfaces as well as ideas from linear algebra and topology. Certain special classes of manifolds also have additional algebraic… … Wikipedia
Conductor of an abelian variety — In mathematics, in Diophantine geometry, the conductor of an abelian variety defined over a local or global field F is a measure of how bad the bad reduction at some prime is. It is connected to the ramification in the field generated by the… … Wikipedia
Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… … Wikipedia
Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… … Wikipedia
Prym variety — In mathematics, the Prym variety construction is a method in algebraic geometry of making an abelian variety from a morphism of algebraic curves. In its original form, it was applied to an unramified double covering of a Riemann surface, and was… … Wikipedia